
22 Dynamical SUSY Breaking: Part II

22.1 SUSY Breaking from Baryon Runaways

Consider a generalization of the 3-2 model:

Sp(2N) SU(2N − 1) SU(2N − 1) U(1) U(1)R

Q 1 1 1
L 1 −1 − 3

2N−1

U 1 0 2N+2
2N−1

D 1 1 −6 −4N

with a tree-level superpotential

W = λQLU. (22.1)

If we turn off the SU(2N−1) gauge coupling and the superpotential, Sp(2N)
is in a non-Abelian Coulomb phase for N ≥ 6, it has a weakly-coupled
dual description for N = 4, 5, it s-confines for N = 3, and confines with a
quantum-deformed moduli space for N = 2. If we turn off the Sp(2N) gauge
coupling and the superpotential, SU(2N − 1) s-confines for any N ≥ 2. We
will consider the case that ΛSU � ΛSp.

Including the effects of the tree-level superpotential, this theory has a
classical moduli space that can be parameterized by the gauge-invariants

SU(2N − 1) U(1) U(1)R

M = LL −2 − 6
2N−1

B = U
2N−2

D −6 −4(N2−N+1)
2N−1

b = U
2N−1 1 0 2N + 2

subject to the constraints

MjkBlε
klm1···m2N−3 = 0, Mjkb = 0. (22.2)

These constraints split the moduli space into two branches: on one of them
M = 0 and B, b 6= 0, and on the other M 6= 0 and B, b = 0.

First consider the branch where M = 0. In terms of the elementary fields,
this corresponds to the VEVs (up to gauge and flavor transformations)

〈U〉 =
(

v cos θ
v12N−2

)
, 〈D〉 =


v sin θ

0
...
0

 , (22.3)
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For v � ΛSU , SU(2N − 1) is generically broken and the superpotential
gives masses to Q and L or order λv. The low-energy effective theory is
pure Sp(2N), which has gaugino condensation.

Λ3(2N+2)
eff = Λ3(2N+2)−2(2N−1)

Sp

(
λU
)2(2N−1)

(22.4)

Weff = Λ3
eff ∼ Λ3

Sp

(
λU

ΛSp

) 2N−1
N+1

(22.5)

For N > 2 this forces U to zero.
Now consider v � ΛSU , then SU(2N − 1) s-confines so we have the

following effective theory

Sp(2N) SU(2N − 1)
L

(QU)
(QD) 1

(Q2N−1) 1
B 1
b 1 1

with

W = λ(QU)L +
1

Λ4N−3
SU

[
(Q2N−1)(QU)B + (Q2N−1)(QD)b− detQQ

]
(22.6)

So (QU) and L can be integrated out with (QU) = 0, and we have

W =
1

Λ4N−3
SU

(Q2N−1)(QD)b (22.7)

On this branch of the moduli space 〈b〉 ∼ 〈U2N−1〉 6= 0, and this VEV gives
a mass to (Q2N−1) and (QD) which leaves an pure Sp(2N) as the low energy
effective theory.

Λ3(2N+2)
eff = Λ3(2N+2)−2(2N−1)

Sp (λΛSU )2(2N−1)
(

b

ΛSU

)2

(22.8)

Weff = Λ3
eff ∼ b

1
N+1

(
ΛN+4

Sp λ2N−1Λ(2N−2)
SU

) 1
N+1 (22.9)

Which forces b →∞, but the effective theory is only valid up to ΛSU and we
have seen that beyond this point the potential starts to rise, so the vacuum
is around

〈U2N−1〉 ∼ Λ2N−1
SU (22.10)
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With some more work one can also see that SUSY is broken when ΛSp �
ΛSU . An especially interesting case is when N = 3, and Sp(6) s-confines
and we have the following effective theory

SU(5) SU(5)

(QQ) 1

(LL) 1
(QL)

(Q2N−1) 1
U
D 1

with

W = λ(QL)U + Q2N−1L2N−1 (22.11)

After integrating out (QL) and U we find SU(5) with and antisymmetric
tensor and an antifundamental and some singlets, which we have already
seen breaks SUSY by other methods.

On the other branch where 〈LL〉 6= 0, one can see that the D-flat direc-
tions for L break Sp(2N) to SU(2), the effective theory is

SU(2) SU(2N − 1)
Q′

L′ 1
U

′ 1
D 1

and some singlets with

W = λQ′U
′
L′ (22.12)

This is a generalized 3-2 model with a dynamical superpotential, for 〈L〉 �
ΛSU the vacuum energy is independent of the SU(2) scale and proportional
to Λ4

SU,eff ∝ a positive power of 〈L〉, which drives 〈L〉 smaller. For 〈L〉 �
ΛSU we can use the s-confined description above, and find that the baryon
b runs away. For 〈L〉 ≈ ΛSU , the vacuum energy is

V ∼ Λ4
SU (22.13)

which is larger than the vacuum energy on the other branch, so we see that
the baryon runaway solution is the global minimum.
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22.2 SUSY Breaking and Deformed Moduli Spaces

The Intriligator-Thomas-Izawa-Yanagida model is a vector-like theory which
consists of the following fields

SU(2) SU(4)
Q

S 1

with

W = λSijQiQj (22.14)

The strong SU(2) dynamics enforces a constraint

Pf(QQ) = Λ4 (22.15)

while the equation of motion for S is

δW

δSij
= λQiQj = 0 (22.16)

Since these equations are incompatable we see that SUSY is broken. Another
way to see this is that for large values of λS we can integrate out the quarks
and get gaugino condensation:

Λ3N
eff = Λ3N−2 (λS)2 (22.17)

Weff = Λ3
eff = Λ2λS (22.18)

δWeff

δSij
= λΛ2 (22.19)

For general values of λS we can write:

Weff = λSijQiQj + X(PfM − Λ4) (22.20)

The potential is

V =
∑

i

|δWeff

δQi
|2 +

∑
ij

|δWeff

δSij
|2 . (22.21)

For λ � 1 we have essentially solved this theory since we can take λS as a
mass term, then

Mij =
(
Pf(λS)Λ3N−F

) 1
N

(
1

λS

)
ij

(22.22)
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V =
∑
ij

|δWeff

δSij
|2 = |λ|2

∑
ij

|Mij |2

= |λ|2|PfSΛ4|
∑
ij

|
(

1
S

)
ij
|2 , (22.23)

which is minimized at

Sij = (PfS)
1
2 δij (22.24)

so

V = |λ|2Λ4 (22.25)

which agrees with our gaugino condensation calculation, so S appears to be
a flat direction. This is Witten’s loop-hole in the index argument since the
theory with ∆W = msS

2 is different from the theory with ms → 0 since
vacua can come in from ∞.

As we saw in the O’Raifeartaigh model flat directions become pseudo-
flat with SUSY breaking. For large values of λS in this model there is a
wavefunction renormalization

Z = 1 + cλλ† ln

(
µ2

0

λ2S2

)
(22.26)

So the vacuum energy is corrected to be

V =
|λ|2

|Z|Λ4

≈ |λ|2Λ4

[
1 + cλλ† ln

(
λ2S2

µ2
0

)]
(22.27)

So the potential slopes towards the origin. This can be stabilized by gauging
a subgroup of SU(4). Otherwise there is a calculable O’Raifeartaigh model
near λS ≈ 0, which breaks down near λS ≈ Λ. The behavior near this
region is unknown.
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